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A B S T R A C T

Accurate estimation of terrestrial evapotranspiration (ET) is crucial for understanding land–atmosphere in-
teractions, but is challenging on the regional scales. The water balance approach, including terrestrial and at-
mospheric water balance (TWB and AWB), provides a simple tool for estimating regional ET. This study
estimated ET values based on the AWB approach (ETAWB) over the continental United States (CONUS) for the
period 1979–2021. Validations using TWB-based ET estimates (ETTWB) suggest that ETAWB is accurate. ETAWB
demonstrates comparable interannual variability with the other three long-term ET products over the CONUS
and is consistent with ETTWB in the majority of basins. The 43-year CONUS averaged ETAWB is 548 ± 26 mm/
year, with higher values in the eastern region and the coastal regions in the western CONUS, and lower values in
the western arid regions. During 1979–2021, increasing trends of ETAWB are observed in the eastern CONUS,
while decreasing trends occurred in the western regions. The intercomparison between ETAWB, GLEAM, Noah,
and ERA5 illustrates similar spatial patterns and linear trends. In the water-limited arid basins, ETAWB anomalies
over time show strong agreements with precipitation anomalies. The results of this study indicate that the AWB
approach provides reasonable regional-to-continental terrestrial ET estimates over the CONUS, serving as a
reference for hydrological and climatic modeling.

1. Introduction

Evapotranspiration (ET) is one of the most important fluxes in the
Earth’s climate system, exchanging water, carbon, and energy between
the atmosphere and the land surface (Oki & Kanae, 2006; Trenberth
et al., 2009), thereby linking the land and atmospheric branches of the
hydrological cycle. More than 60% of precipitation on the land surface is
returned to the atmosphere through ET, while also consuming over 50%
of the solar radiation at the land surface. Consequently, ET strongly
influences atmospheric water vapor transport patterns and the terres-
trial water availability, which are essential for regulating the climate.

Therefore, accurate estimation of ET is critical for enhancing our un-
derstanding of atmosphere-hydrosphere interactions and for effectively
managing water resources.

Traditionally, ET is monitored using in situ measurements such as
lysimeters, Bowen ratio energy balance and eddy covariance ([EC])
(Allen et al., 2011). However, such ground-based measurements are
costly and time-consuming, especially when the regional scale (large
areas with various sizes and shapes) is of interest (Xu & Singh, 2005).
Consequently, estimating regional-scale ET relies on modeling tech-
niques. Models used to estimate ET are broadly categorized into land
surface models (LSMs) (Ma et al., 2017; Mu et al., 2011; Xia et al., 2016;
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Zhang et al., 2022), remote sensing-based models (RSMs) (Ma & Zhang,
2022; Yu et al., 2022; Zhang et al., 2019), data assimilation systems (Lu
et al., 2017), the complementary relationship (CR) (Ma et al., 2020; Ma
& Szilagyi, 2019; Szilagyi & Jozsa, 2018), upscaling of ground ET
measurements (Jung et al., 2019), reanalysis (Gelaro et al., 2017;
Hersbach et al., 2020; Kobayashi et al., 2015), process-based ecosystem
models such as TRENDY (Liu et al., 2021a), and the Coupled Model
Intercomparison Project Phase 6 (Liu, et al., 2021b). These models aim
to represent and predict the spatiotemporal variability of ET from the
regional scale to the global scale. However, most of the available ET
products mentioned above rely on input parameters related to soil and
vegetation, leading to additional uncertainties due to some assumptions
(Martens et al., 2017a; Masson et al., 2003; Mu et al., 2011). LSMs are
directly constrained by soil moisture availability (Long et al., 2014;
Yang et al., 2013), which may accumulate errors and amplify un-
certainties in ET simulations. Spatial resolutionmismatch among forcing
data exists in RSMs, such as finer vegetation data and coarser meteo-
rological data (Yang et al., 2013). Data assimilation techniques combine
the advantages of model simulation and remote sensing techniques, but
the uncertainty of the data involved in the assimilation process may
impair their performance (Zou et al., 2017). Although the CR model
requires only routine meteorological variables, it has certain difficulties
in estimating ET at high temporal (e.g., hourly) and spatial (e.g., a few
hundred meters) resolutions (Ma et al., 2021; Szilagyi et al., 2017). The
upscaling method is also constrained by the availability and quality of
data (Liu et al., 2016). Reanalysis products typically exhibit inherent
biases and uncertainties due to the assimilation process, particularly in
regions with sparse observational data. Therefore, a large-scale assess-
ment of different ET products by direct or indirect evaluation methods is
required for their use in global and regional hydrological studies (Shao
et al., 2022).

The global FLUXNET networks are commonly used to assess the ET
products at various time series across different vegetation types (Chen
et al., 2020; Liu et al., 2023; Volk et al., 2023; Zhang et al., 2019).
However, its utility for evaluation is limited due to the relatively short
period, sparse spatial coverage, and the lack of energy balance closure at
some EC sites. Alternatively, the water-balanced approach, including
terrestrial water balance (TWB) and atmospheric water balance (AWB),
provides a check for the modeled ET products (Builes-Jaramillo &
Poveda, 2018) and is also the simplest tool for estimating regional ET. In
theory, ET can be expressed as the residual between precipitation (P)
minus the sum of net runoff (S) and terrestrial water storage (TWS)
change at the basin scale (Pascolini-Campbell et al., 2020; Rodell et al.,
2004). Numerous studies have estimated ET at the basin scale based on
TWB to serve as a reference for the modeled ET (e.g., Chen et al., 2020;
Liu et al., 2016; Ma& Szilagyi, 2019; Zhang et al., 2022). However, most
of these studies have been limited to basin scales from 10-1 km2 to 103

km2 and have seldom been applied to a larger scale for estimating ET
values. Additionally, due to the paucity of data with adequate resolution
and enough length, for example, the period of Gravity Recovery and
Climate Experiment (GRACE) water storage only starts from 2002,
discharge measurements are often unavailable due to technical or po-
litical reasons, and the significant spatial resolution difference between
the GRACE and the ET products, the TWB approach tends to result in
many uncertainties in small basins (Longuevergne et al., 2010; Ma &
Szilagyi, 2019).

Another approach to estimating ET using the water balance method
is the AWB, derived as the residual of precipitation (P), atmospheric
water vapor convergence ( − ∇⋅Q), and atmospheric water storage
change (∂W∂t ) (Oki et al., 1995). The calculation of atmospheric water-
balanced ET (ETAWB) relies on detailed meteorological information,
including winds and humidity, usually derived from radiosondes and
complemented by remote sensing techniques and atmospheric analysis
models to achieve a steady and time-continuous global coverage. Using
abundant aerological data to estimate ET offers a way to overcome the

issues of unsatisfactory runoff data in the TWB approach, providing
another direct method to verify model simulations. However, the AWB is
commonly used to analyze the atmospheric water budget related to
precipitation change under climate change from an atmospheric
perspective (Dagan et al., 2019; Shang et al., 2022; Su & Smith, 2021).
Serving as a link between the terrestrial and the atmospheric hydro-
logical cycle, ET is the total water vapor flux transported from the sur-
face to the atmosphere. This is considered terrestrial ET whether it is
part of the atmospheric water balance or the terrestrial water balance.
However, few studies shed light on estimating terrestrial ET from the
perspective of the AWB, despite ET being one of the most important links
between both the terrestrial and atmospheric branches of the hydro-
logical cycle.

Previous studies have attempted to estimate regional ET using the
AWB approach over the continental United States (CONUS)
(RASMUSSON, 1968; RASMUSSON 1971; Ropelewski and Yarosh,
1998; Yeh et al., 1998). For example, Yeh et al. (1998) demonstrated
that the regional ET can be statistically estimated by the AWB approach
at a scale similar to that of Illinois through a comparison of the ET es-
timates from AWB and soil water balance. However, due to the scarcity
of ground measurements data, the limited temporal-spatial resolution,
and the short period for the atmospheric reanalysis (e.g., specific hu-
midity, wind speed), the validation of the atmospheric water balanced
ET estimates over the CONUS in the previous literature is limited (Yeh
et al., 1998). With the increase in ground observations and advance-
ments in remote sensing and atmospheric analysis models, such as the
European Center for Medium-Range Weather Forecasts Reanalysis
(ERA5), which has been demonstrated as one of the best-performing
reanalysis in many studies (Hersbach et al., 2020; Tarek et al., 2020),
more refined materials are available for estimating ET using the AWB
approach.

Therefore, the objectives of this study are 1) to estimate ET over the
CONUS based on the AWB approach using observed precipitation data
and ERA5 reanalysis, producing a set of the atmospheric water-balanced
ET product at a daily scale during 1979–2021; 2) to investigate the
validity of the AWB computations for the regional-scale ET estimates by
comparing them with TWB-based ET estimates at the basin scale and
mainstream global gridded ET products over the CONUS; and 3) to
analyze the spatial–temporal variations in evapotranspiration over the
CONUS based on the AWB approach. Once validated, the AWB-based ET
estimates can serve as a reference for modeled regional ET and climate
simulations.

2. Materials and methods

2.1. Atmospheric water balance

The atmospheric water balance equation can be written as follows
(Oki et al., 1995):

∂W
∂t = − ∇⋅Q+ ET − P (1)

where ∂W
∂t is the change of atmospheric water storage, − ∇⋅Q is the mean

convergence of the horizontal atmospheric water vapor fluxes, ET is the
evapotranspiration, and P denotes the precipitation.

The atmospheric water-balance-based evapotranspiration (ETAWB)
can be derived by solving equation (1) for ET using observed precipi-
tation, the atmospheric water vapor storage change, and the vertically
integrated atmospheric moisture convergence as:

ETAWB = P+∇⋅Q −
∂W
∂t (2)

in this study, the ETAWB is calculated on a daily scale at a 0.25◦ resolution
from 1979 to 2021 and converted to monthly data for comparison. The
CPC Unified Gauge-Based Analysis of daily precipitation (Chen & Xie,
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2008; Xie et al., 2010) over the CONUS with a 0.25◦ resolution is used to
calculate the daily ET. The quality of the CPC precipitation data has been
evaluated by Chen et al., (2008) which indicates that the optimal
interpolation (OI) technique used to generate CPC precipitation product
shows stable performance statistics over the CONUS. The ERA5 rean-
alysis (Hersbach et al., 2020)) provides the hourly vertical integrated
moisture convergence and the total column atmospheric water vapor
with a 0.25◦ resolution. The ERA5 reanalysis is the most recent rean-
alysis dataset of ECMWF which combines vast amounts of historical
observations into global estimates from 1950 onwards and replaces the
ERA-Interim dataset. There are pronounced improvements and changes
from ERA-Interim to ERA5 in the assimilation scheme, observation
system, and model algorithm. The spatial resolution of ERA5 has been
increased to ~ 31 km (0.25◦) with 137 vertical layers and hourly output.
The improved temporal and spatial resolution allow for a detailed
evolution of weather systems. The variable of the total amount of water
vapor in a column from ERA5 extends from the surface of the earth to the
top of the atmosphere which represents the area averaged value for a
grid box.

2.2. Terrestrial water balance

The basin-scale TWB-based evapotranspiration (ETTWB) can be
derived as:

ETTWB = P − R −
∂S
∂t (3)

where P, R, and ∂S
∂t represent the basin-wide precipitation, stream runoff,

and terrestrial water storage change respectively.
In this study, we estimated the TWB-based ET (ETTWB) of 18 first-

level two-digit (i.e., HUC2) hydrological units (Fig. 1) in the CONUS
(Seaber et al., 1987) on an annual scale. The evaluations of ET at the
basin scale are based on basin-wide ET averaged over the 18 basins.
Basic information on 18 river basins employed in this study is summa-
rized in Supplementary Table 1. Since the TWS datasets from the
GRACE (Tapley et al., 2019) are only available from 2002, the yearly
TWS data from 1980 to 2002 are from GRACE-REC (Humphrey &
Gudmundsson, 2019). The GRACE-REC product is a state-of-the-art
climate-driven TWS product trained by a statistical model. It provides
a century-long reconstruction including the pre-GRACE period, which
has become popular for long-term hydro-climatological studies. In this
study, the JPL Mascon RL06.1 Version 3.0 GRACE data are employed in
Equation (4) to calculate ET at the basin scale. Meanwhile, the GRACE-

REC version used in the study was forced by ERA5 precipitation and
temperature data and calibrated by mascons from the Jet Propulsion
Laboratory (JPL).

The basin-wide runoff from 1979 to 2020 for all hydrological units is
sourced from the United States Geological Survey (USGS). The annual
precipitation is also integrated from the CPC Unified Gauge-Based
Analysis of daily precipitation in the TWB.

2.3. Long-term gridded terrestrial ET products

In this study, we selected three main-stream long-term ET products
including the Global Land Evapotranspiration Amsterdam Model
(GLEAM), NLDAS Noah Land Surface Model and ERA5 to provide a
performance comparison for the ETAWB. These three products were
chosen because they have identical temporal coverage to the ETAWB.
Other products, such as Complementary relationship (CR) model (Ma
et al. 2021), the FLUXNET-MTE (Jung et al., 2011) and the Peman-
Monteith-Leuning (PML) data (Zhang et al., 2017) have shorter
period. GLEAM is designed to be driven solely by remote sensing ob-
servations. In the present study, we used the GLEAMV3.6a, covering the
period from 1980 to 2021 on a daily time step at a 0.25◦ resolution,
which was then converted to a monthly scale (Martens et al., 2017b).
The Noah land surface model was driven by NLDAS-2 atmospheric
forcing at a 0.125◦ resolution, generating monthly data for a series of
land surface parameters (accumulation of rainfall, snowfall, subsurface
runoff, surface runoff, and total evapotranspiration) from 1979 to the
present (Xia et al. 2012). All products were remapped to 0.25◦ using
bilinear interpolation.

Five statistical metrics were used in this study: (1) coefficient of
determination (R2), (2) root-mean-square error (RMSE), (3) mean ab-
solute error (MAE), (4) Nash-Sutcliffe efficiency coefficient (NSE), (5)
correlation coefficient (R).

3. Results

3.1. Validation of ETAWB at the basin scale

Fig. 2 presents the scatter plot of the linear regression between the
ETAWB, GLEAM, Noah, and ERA5 against the ETTWB for the 18 HUC2
basins over the CONUS. Both the ETAWB and the other three products
display relatively good consistency with the ETTWB, with the R2 ranging
from 0.864 to 0.962 (ETAWB is 0.929) and NSE values close to 1 (ETAWB is
0.784). Compared to the other three ET products, the RMSE of ETAWB is
99.299, only slightly higher than that of Noah. The linear regression

Fig. 1. Location of 18 HUC2 basins across the CONUS (01 = New England, 02 = Mid-Atlantic, 03 = South Atlantic-Gulf, 04 = Great Lakes, 05 = Ohio, 06 =

Tennessee, 07 = Upper Mississippi, 08 = Lower Mississippi, 09 = Souris-Red-Rainy, 10 =Missouri, 11 = Arkansas-White-Red, 12 = Texas Gulf, 13 = Rio Grande, 14
= Upper Colorado, 15 = Lower Colorado, 16 = Great Basin, 17 = Pacific Northwest, 18 = California). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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slope between the ETAWB and ETTWB is 1.076, indicating a tendency to
overestimate high values of ETTWB, while the GLEAM and Noah tend to
underestimate, particularly Noah. However, GLEAM and ERA5 tend to
overestimate low values of the ETTWB. The results of the regression plot
of the annual ETAWB, GLEAM, Noah and ERA5 against the ETTWB,
calculated from GRACE during the period 2002–2020, also shows
similar findings (Figure S1).

Fig. 3 further displays the evaluation of the annual ETAWB and the
other three ET products against the ETTWB at 18 basins. ETAWB shows
good consistency with the ETTWB, with R2 values higher than 0.8 at all
the basins. NSE values for ETAWB are close to 1, except for the Upper
Colorado, which has values lower than 0.5, similar to GLEAM and ERA5.
Noah and ERA5 shows the highest consistency with ETTWB, with R2

exceeding 0.9 in all most all basins, whereas GLEAM demonstrates the
lowest consistency. The MAE values from the ETAWB are lower than 100
mm/year at most basins, which is comparable to the other three main-
stream products. Compared to the other three products, ETAWB shows a
relatively lower deviation at most basins in terms of the RMSE. Overall,
ETAWB closely agrees with the ETTWB in the 18 HUC2 basins over the
CONUS. This indicates that ETAWB is reasonable for reproducing the
estimation of ET at basin scales.

To evaluate the performance of the ETAWB to capture the interannual
variations in long time series, the comparison for interannual variability
of the annual ETAWB, GLEAM, Noah, ERA5 and ETTWB at 18 HUC2 basins
over the CONUS is shown in Fig. 4. It is found that the interannual
variation of the ETAWB is consistent with that of the ETTWB at the ma-
jority of the basins over the CONUS. The consistency is the highest in the

Souris-Red-Rainy (Basin 09), the Missouri (Basin 10), the Arkansas-
White-Red (Basin 11), the Rio Grande (Basin 13), the Upper Colorado
(Basin 14), and the Lower Colorado (Basin15) with correlation co-
efficients all exceeding 0.65 and being significant at the 99 % confidence
level (Table S2). Noah also shows better performance in capturing the
interannual variability in basins 09 to 15, similar to the ETAWB. How-
ever, the magnitude of Noah is always the lowest among the four
products, which underestimates the ETTWB at almost all the HUC02
basins and shows the smallest interannual variability. In contrast,
GLEAM is not performing well in capturing the interannual variability in
HUC2 basins. ERA5 usually overestimates the ET values compared to
ETTWB.

3.2. Spatial-temporal patterns in ET over the CONUS

Figure 5 shows the spatial distribution of the muti-year (1979–2021)
mean annual ETAWB. ETAWB shows higher values over the humid regions
in the eastern CONUS and lower values over the arid regions in the
western CONUS. The highest ET value was observed in the southeastern
CONUS (>1000 mm/year) and also over the Great Salt Lake, since the
AWB approach does not only focus on land surface ET. In addition, high
ET estimates also occurred over the coastal regions in western CONUS,
which receive much of the annual precipitation in the form of
orographic heavy rain (Gershunov et al., 2019). The spatial pattern of
the multi-year mean annual ETAWB is consistent with that of the main-
stream ET products (Figure S2), except for the magnitude of ET
values in the Gulf Coastal Plain and Florida peninsula, which are

Fig. 2. Regression plots of the annual ETAWB, GLEAM, Noah and ERA5 against the ETTWB at 18 HUC2 basins during their overlapping temporal coverage from 1979
to 2021. The black dashed lines represent the 1:1 line and the magenta lines are the regression line. RMSE is in the unit of mm/year. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

S. Shang et al.
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Fig. 3. Comparison of the estimated ET from the AWB approach and the other three products versus the ETTWB at 18 HUC2 basins over the CONUS.
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estimated to be higher than in the other three products. Figure 6 shows
the time series of the CONUS-averaged ETAWB and ET estimates from
GLEAM, Noah, and ERA5. ETAWB shows comparable interdecadal vari-
ability to GLEAM (R=0.63, p < 0.01), Noah (R=0.59, p < 0.01), and
ERA5 (R=0.52, p < 0.01). The values of annual ETAWB are close to that
of GLEAM, higher than Noah’s and lower than ERA5. The CONUS-
averaged multiyear mean annual ET estimated by ETAWB, GLEAM,
Noah and ERA5 are 548 ± 26 mm/year, 544 ± 18 mm/year, 455 ± 12
mm/year, and 603 ± 20 mm/year. The results indicate that the per-
formance of the CONUS-regional-averaged ETAWB is reasonable at the
regional scale compared to mainstream gridded ET products.

Fig. 7 shows the 43-year-averaged (1979–2021) seasonal cycle of
ETAWB and the other AWB components (i.e., precipitation, atmospheric
moisture convergence, and atmospheric water vapor storage change)
over the CONUS. Overall, ETAWB estimates show a comparable seasonal
cycle to the other three mainstream products (Figure S3), with maxima

Fig. 4. Time series of mean annual ET based on AWB, GLEAM, Noah, ERA5, and TWB approach at 18 HUC2 basins over the CONUS.

Figure 5. Spatial pattern of the multi-year mean annual ETAWB from 1979
to 2021.

S. Shang et al.
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in the summer (June-July-August) and minimum in the winter
(December-January-February) although with a relatively higher
magnitude in the summer for ETAWB. Additionally, ETAWB shows a
higher value in September (75 mm/month) compared to GLEAM, Noah
and ERA5 (50–60 mm/month), resulting in high ET values lasting for
four months in ETAWB. ET values from Noah are smaller than those from
GLEAM from January to July, suggesting that the underestimation of
Noah may be due to the underestimates in these months. However,
ERA5 is overestimated in May, June, July, August, and September. The
seasonal cycle of the AWB components averaged over the entire CONUS
shows that the seasonal cycle of precipitation is not significant. During
June, July, August, and September, ET values exceed that of precipita-
tion, while precipitation is much larger than ET during winter months.
The seasonal cycle of atmospheric moisture convergence is similar to
that of ETAWB. The monthly moisture convergence values are positive in
June, July, August, and September, indicating net water vapor input
during these periods while divergence away from this region during the
remaining months of the year. The change in atmospheric water storage
is negligible.

Fig. 8 the seasonal cycle of the ETAWB and the other AWB compo-
nents at the 18 HUC2 basins to assess the performance of the AWB
approach in capturing the seasonal cycle of ET in different climate zones.
Table S3 summarizes the climate types of 18 HUC2 basins are according

to the Köppen climate classification system (Beck et al., 2018). Basins 01
to 06 mainly belong to the humid continental and subtropical climate
characterized by hot and wet summers. Therefore, high ET values in
June, July, August, and September with a magnitude higher than 100
mm/month are observed, which is more or less equivalent to the
CONUS-average value. Basin 07, 08, and 09 demonstrate a peak value in
July influenced by monsoon. The values of ET, precipitation, and
moisture convergence in Basin 13, 14, and 15 are relatively low due to
their semi-arid climates. Basins 17 and 18 (especially Basin 18) show
comparable ET values every month, while precipitation shows an
“inverted V” due to the Mediterranean climate’s characteristics of mild
wet winters and warm to hot dry summers. These results indicate that
ETAWB reasonably captured the characteristics of the seasonal cycle in
different climate zones over the CONUS.

3.3. Long-term trends of ET in the CONUS from 1979 to 2021

Fig. 9 displays the spatial pattern of the estimated linear trends in
ETAWB over the CONUS from 1979 to 2021 showing a significant
decrease in the western CONUS and a significant increase on the eastern
coast and the Gulf Coast. Overall, the spatial distribution of the linear
trends in ETAWB is roughly consistent with GLEAM, Noah, and ERA5,
showing negative trends in the western CONUS and positive trends in
the eastern CONUS, although the positive trends in ERA5 are not as
significant (Figure S4). The magnitude of the increasing trend in ETAWB
over the eastern CONUS is closer to ERA5. However, a decreasing trend
occurred in the State of Minnesota, the Appalachian Mountains in the
ETAWB, which is inconsistent with Noah and GLEAM.

Fig. 10 further shows the anomaly values of annual ETAWB and CPC
precipitation averaged over the CONUS from 1979 to 2021. The
anomalies are defined as the annual average value of ET and precipi-
tation every year minus the average multi-year mean value from 1979 to
2021. It is shown that ET anomalies track precipitation anomalies from
the end of the 1900s averaged across the entire CONUS, indicating
precipitation is more likely lost to ET during that period. To investigate
the correlations of the ET and precipitation in different regions, Fig. 11
displays the anomaly values of the annual ET and precipitation averaged
in the 18 HUC2 basins, respectively. The anomalies of the ET and pre-
cipitation are particularly consistent in the Rio Grande (Basin 13), Upper
Colorado (Basin 14), Lower Colorado (Basin 15), and the Great Basin
(Basin 16), where ET amounts are less than 30 mm/month, with the
correlation coefficient values larger than 0.75 and statistically signifi-
cant at the 99% confidence level (Figure 5). This is because the ET in
these arid regions being water-limited, leading to a larger fraction of
precipitation being lost to ET, which in turn causes the ET anomalies to
track the precipitation anomalies more closely. However, the situation is
different in humid regions because ET tends to be energy-limited, as
concluded in other studies using different types of ET products (Hamlet
et al., 2007; T. Xu et al., 2019).

4. Discussion

4.1. Comparison of ETAWB with other ET products

The estimation of ETAWB in the present study reasonably captured
the spatial–temporal pattern and trends of the ET over the CONUS
reasonably compared to other products (Figures 5 and 9 and Figures S1
and S2) and results from previous studies (Ma & Szilagyi, 2019; Reitz
et al., 2023; Velpuri et al., 2013; Ma et al., 2024). ETAWB exhibits high
values in the eastern CONUS and the coastal region of the western
CONUS due to its pattern tracking the precipitation pattern (Cui et al.,
2017; Gershunov et al., 2019; Koster et al., 2015; Portmann et al., 2009).
Regarding the magnitude, Noah tends to underestimate ET values over
the CONUS (Figure 6, FigureS1) compared to other products, as
observed in other studies (Ma & Szilagyi, 2019; Xia et al., 2016). In
contrast, ERA5 estimated higher values over the CONUS (Figures 6).

Figure 6. Time series of the annual ETAWB and ET estimates from the other
three products.

Fig. 7. Seasonal cycle of the atmospheric water balance components in CONUS.
Here P is precipitation, ET is the evapotranspiration estimate from the AWB,
− ∇⋅Q represents the atmospheric moisture convergence, and ∂W

∂t denotes the
change in the atmospheric water storage.

S. Shang et al.



Journal of Hydrology 640 (2024) 131699

8

Model intercomparisons in previous studies have also indicated that
reanalysis-based ET is much higher than that from LSM and RSM-based
products (Miralles et al., 2016; Mueller et al., 2013). The regression of
the ETAWB, Noah, GLEAM, and ERA5 against the ETTWB indicates that
Noah performs the best, followed by ERA5, with GLEAM performing the
worst (Fig. 2). This may be because only Noah is intended exclusively for

the CONUS, providing more reliable atmospheric forcing, soil, and
vegetation data (Xia et al., 2012). While GLEAM is forced by global
forcing, including Multi-Source Weighted Ensemble Precipitation data
(Beck et al., 2017), along with air temperature and radiation from the
ERA-Interim (Berrisford et al., 2011). For the seasonal cycle, the ETAWB
is characterized by high ET values from June to September, which is

Fig. 8. Seasonal cycle of the atmospheric water balance components of 18 HUC2 basins respectively. Here P represents precipitation, ET represents the evapo-
transpiration estimated from the AWB approach, − ∇⋅Q represents the atmospheric moisture convergence, and ∂W

∂t denotes the change in the atmospheric
water storage.
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inconsistent with other products that show a sudden drop in September
(Figure 7 and Fig. S2). This may be due to the AWB approach-based ET
estimate being constrained by precipitation, and atmospheric water
convergence from reanalysis data, while no land surface process related
to soil and vegetation is considered. For example, there is a sudden drop
in the leaf area index (LAI) in September (Doughty & Goulden, 2009;
Wang et al., 2014).

4.2. Uncertainties and implications

The AWB approach employed in this study can be used not only for
an independent and mass − conservation-based check for the modeled
ET but also to overcome the limitation of the TWB method in basin scale
and short time span, providing an ET estimation for a continuous long-
time scale on a large spatial scale. However, the accuracy of the AWB
approach depends on the quality of the data sources. At the annual scale,
the change in the atmospheric water storage in the AWB is negligible.
Therefore, the major source of uncertainties comes from precipitation
and the integrated atmospheric moisture convergence. In this study, we
selected the CPC precipitation data, which has been evaluated over the
CONUS (Chen & Xie, 2008; Xie et al., 2010; Wolkeba and Mekonnen,
2024). However, it should be noted that CPC has limitations in accu-
rately representing some grids in mountainous areas due to inadequate

observation station density and difficulty of measurement (Abatzoglou,
2013; Prat & Nelson, 2015). The integrated atmospheric water vapor
and moisture convergence are all provided by ERA5 reanalysis
(Hersbach et al., 2020). Although previous evaluations have indicated
that the ERA5 is indeedmore accurate than other atmospheric reanalysis
(He et al., 2021; Tarek et al., 2020; Wang et al., 2019), the potential
errors in particular forcing are certainly not negligible. Satellite remote
sensing technique are also an effective way for detecting atmospheric
water vapor (also called precipitable water) (He & Liu, 2019), such as
the Precipitable Water Vapor product from the Moderate-resolution
Imaging Spectroradiometer (MODIS) Terra platform. For example, the
ET estimation for the Tibetan Plateau has used the conjoint AWB and
TWB using the precipitable water vapor from MODIS (Li et al., 2019).
However, the accuracy of the MODIS product is insufficient and limited
under cloudy or hazy weather conditions (King et al., 2003; Prasad &
Singh, 2009), which may also introduce additional uncertainties.
Nevertheless, changes in the atmospheric water vapor are almost
negligible at a monthly to annual scales. Therefore, it does not make
much difference to the results of the AWB in this study regardless of the
product of atmospheric water vapor product used. It is found that the
consistency of the ETAWB and ETTWB is better in the interannual varia-
tions in North and South Great Plains (Basins 09–15) but slightly worse
in other basins near the ocean or influenced by the monsoon. This may
be related to the uncertainties in the atmospheric moisture convergence
in the AWB related to extreme tropical cyclones in these areas (Atallah
et al., 2007; Mock, 1996). A previous study has shown that ERA5 tends
to underestimate strong winds (Chen et al., 2024), therefore leading to
an underestimation of the extreme moisture convergence. Continuous
long-term satellite observations of wind and specific humidity, which
are expected to work in the future, could significantly improve the ac-
curacy of estimated ET. In addition, we only use one type of precipita-
tion and reanalysis data to estimate ET in the present study. Using
multiple precipitation and reanalysis could be better accounting for
uncertainty.

5. Conclusions

In this study, we estimated long-term 43-year period ET values over
the CONUS by the AWB approach from an atmospheric perspective.

Fig. 9. Spatial pattern of the linear trends in the ETAWB from 1979 to 2021. Dot indicates that linear trend is statistically significant at the 95% confidence level.

Fig. 10. The CONUS regional ETAWB and precipitation anomaly values from
1979 to 2021, plotted as 5-year moving average values.
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Evaluations of ETAWB and the other three gridded ET products against
the ETTWB at the basin scale indicate that ETAWB performs well in the
majority of basins, with R2 values exceeding 0.8 and NSE values close to
1. Additionally, the estimated ETAWB exhibits comparable interannual
variability to the other three products across the CONUS and is also
consistent with ETTWB in the majority of the basins.

The multi-year mean ETAWB across the CONUS is 548± 26 mm/year.
Higher ETAWB values are observed in the southeastern CONUS and the
coastal regions of western CONUS, while lower ET values are found in
the arid regions of the western CONUS, following the precipitation
pattern. For the seasonal cycle, ETAWB shows a maximum in summer and
a minimum in winter over the CONUS, capturing the characteristics of
the seasonal cycle in different climate zones. During 1979–2021, posi-
tive trends are observed in the eastern CONUS, while negative trends are
observed in the western CONUS. Inter-comparisons demonstrate that
the spatial pattern of multi-year mean and linear trends from the ETAWB
are consistent the current main-stream gridded ET products. Addition-
ally, the annual anomalies in the ETAWB and precipitation exhibit high
consistency in arid basins, which is expected since these arid regions are
water-limited. The AWB approach to estimate ET is a straightforward
and simple method to produce a long temporal coverage product for
validating regional modeled ET, offering a perspective for gaining
further insights. Our results demonstrate that the presented long-term
atmospheric water-balanced ET estimates are suitable for regional ET
studies and can serve as a reference for modeled regional ET and climate

simulations.
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